Ana’s comment to the advancement of fuel-cell technology led to the creation of four fuel cell support centers worldwide. While each focuses on a separate facet of the fuel-cell system, together they share an overall commitment to the design, engineering, and manufacture of components for fuel-cell applications.

Europe
Neu-Ulm, Germany
Metallic bipolar plates with integrated seals are under development here, as are advanced coatings and alternative materials.

Asia
Yamato-shi, Kanagawa, Japan
Personnel at this central location for Ana’s Asian fuel-cell business opportunities facilitate business between Japan and our other global fuel cell support centers.

North America
Oakville, Ontario, Canada
With a focus on thermal management, this full-service facility provides state-of-the-art heat exchangers and complete thermal-management systems.

Paris, Tennessee, USA
This engineering/sales center develops composite bipolar plates and has the ability to incorporate polymer seals with the construction of bipolar plates.

The vehicles, homes, and offices of the future will be powered by new energy sources that deliver higher energy efficiency and lower emissions. With our long history of innovations, Ana is the ideal partner to help bring these next-generation technologies to life.

Ana will be ready whether it’s a hydrogen internal combustion engine, fuel cells, or a hybrid, we’ll be there to support the developers with innovative and reliable products.

Ana is a world leader in the development and manufacture of fuel-cell stack, balance-of-plant, and fuel-processor components for automotive, industrial mobility, and small stationary applications.

Contact:
Europe
Thomas Gilbert
E-Mail: Thomas.Gilbert@dana.com

Asia
Eugene Tanji
E-Mail: eugene.tanji@dana.com

North America
Joe Darke
E-Mail: joe.darke@dana.com
Dana engineers are adapting our proven stack components, seals, and end caps to the requirements of new power sources. We are currently developing composite graphite-based and metallic bipolar plates, including seals for automotive, industrial mobility, and small stationary applications. Dana is also developing advanced coatings that enhance the properties of the bipolar plates.

We have made significant investments into the facilities and testing equipment required to advance fuel-cell technology, as well as the fuel-processor products needed to generate hydrogen for fuel cells. Today, we are uniquely positioned to leverage our existing product base in the area of high-temperature heat exchangers, while understanding the demands necessary for high-volume production.

Thermal Management
Dana has collaborated with customers to develop optimized product solutions to meet fuel-cell stack and balance-of-plant subsystem integration needs, including thermal and water-management systems.

By accomplishing this subsystem integration, we optimize performance of the complete fuel cell to provide a more reliable thermal-management system to meet performance and life expectancy goals.

Coolant Valves and Integrated Pumping Solutions
Dana’s key component technologies include electronically controlled three-way coolant valves, which can be integrated into subsystem modules to merge heat exchangers, electric pumps, or both. This results in precisely controlled stack temperature control, enhanced warm-up in cold start conditions, and de-ionized water compatibility.

We have made significant investments into the facilities and testing equipment required to advance fuel-cell technology, as well as the fuel-processor products needed to generate hydrogen for fuel cells. Today, we are uniquely positioned to leverage our existing product base in the area of high-temperature heat exchangers, while understanding the demands necessary for high-volume production.
Dana engineers are adapting our proven stack components, seals, and end caps to the requirements of new power sources. We are currently developing composite graphite-based and metallic bipolar plates with seals for automotive, industrial mobility, and small stationary applications. Dana is also developing advanced coatings that enhance the properties of the bipolar plates.

We accept the challenge of bringing alternative solutions to the mainstream. Dana is adapting proven technologies for tomorrow’s power sources. Drawing upon our proven expertise in the development of high-temperature materials, fuel processors represent a natural extension of our product capabilities.

Dana has collaborated with customers to develop optimized product solutions to meet fuel-cell stack and balance-of-plant subsystem integration needs, including thermal- and water-management systems.

Dana is developing a complete fuel-cell stack to provide a more reliable thermal-management system to meet performance and life expectancy goals.

Dana is adapting proven technologies for tomorrow’s power sources. We have made significant investments into the facilities and testing equipment required to advance fuel-cell technology, as well as the fuel-processor products needed to generate hydrogen for fuel cells.

Today, we are uniquely positioned to leverage our existing product base in the area of high-temperature heat exchangers, while understanding the demands necessary for high-volume production.

Coastal Valves and Integrated Pumping Solutions. Dana’s key component technologies include electronically controlled three-way coolant valves, which can be integrated into subsystem modules to merge heat exchangers, electric pumps, or both. This results in precise stack temperature control, enhanced warm-up in cold start conditions, and de-ionized water compatibility.

By completing this subsystem integration, we optimize performance of the complete fuel cell to provide a more reliable thermal-management system to meet performance and life expectancy goals.

We have made significant investments into the facilities and testing equipment required to advance fuel-cell technology, as well as the fuel-processor products needed to generate hydrogen for fuel cells.

Dana is adapting proven technologies for tomorrow’s power sources. Drawing upon our proven expertise in the development of high-temperature materials, fuel processors represent a natural extension of our product capabilities.

Dana has collaborated with customers to develop optimized product solutions to meet fuel-cell stack and balance-of-plant subsystem integration needs, including thermal- and water-management systems.

Dana is developing a complete fuel-cell stack to provide a more reliable thermal-management system to meet performance and life expectancy goals.

Dana is adapting proven technologies for tomorrow’s power sources. We have made significant investments into the facilities and testing equipment required to advance fuel-cell technology, as well as the fuel-processor products needed to generate hydrogen for fuel cells.

Today, we are uniquely positioned to leverage our existing product base in the area of high-temperature heat exchangers, while understanding the demands necessary for high-volume production.

Coastal Valves and Integrated Pumping Solutions. Dana’s key component technologies include electronically controlled three-way coolant valves, which can be integrated into subsystem modules to merge heat exchangers, electric pumps, or both. This results in precise stack temperature control, enhanced warm-up in cold start conditions, and de-ionized water compatibility.

By completing this subsystem integration, we optimize performance of the complete fuel cell to provide a more reliable thermal-management system to meet performance and life expectancy goals.

We have made significant investments into the facilities and testing equipment required to advance fuel-cell technology, as well as the fuel-processor products needed to generate hydrogen for fuel cells.

Dana is adapting proven technologies for tomorrow’s power sources. Drawing upon our proven expertise in the development of high-temperature materials, fuel processors represent a natural extension of our product capabilities.
We accept the challenge.

Dana engineers are adapting our proven stack components, seals, and end caps to the requirements of new power sources. We are currently developing composite graphite-based and metallic bipolar plates with seals for automotive, industrial mobility, and small stationary applications. Dana is also developing advanced coatings that enhance the properties of the bipolar plates.

By accomplishing this subsystem integration, we optimize performance of the complete fuel cell to provide a more reliable thermal management system to meet performance and life expectancy goals.

We have made significant investments into the facilities and testing equipment required to advance fuel cell technology, as well as the fuel processor products needed to generate hydrogen for fuel cells. Today, we are uniquely positioned to leverage our existing product base in the area of high-temperature heat exchangers, while understanding the demands necessary for high-volume production.

We bring alternative solutions to the mainstream.

Dana is adapting proven technologies for tomorrow’s power sources. Drawing upon our proven expertise in the development of high-temperature materials, fuel processors represent a natural extension of our product capabilities.

Thermal Management

Dana has collaborated with customers to develop optimized solutions to meet fuel-cell stack and balance-of-plant subsystem integration needs, including thermal and water management systems.

Coolant Valves and Integrated Pumping Solutions

Dana’s key component technologies include electronically controlled three-way coolant valves, which can be integrated into subsystem modules to merge heat exchangers, electric pumps, or both. This results in predictable stack temperature control, enhanced warm-up in cold start conditions, and de-ionized water compatibility.
Dana's commitment to the advancement of fuel-cell technology led to the creation of four fuel cell support centers worldwide. While each focuses on a separate facet of the fuel-cell system, together they share an overall commitment to the design, engineering, and manufacture of components for fuel-cell applications.

Europe
Neu-Ulm, Germany
Metallic bipolar plates with integrated seals are under development here, as are advanced coatings and alternative materials.

Asia
Yamato-ku, Kanagawa, Japan
Personnel at this central location for Dana's Asian fuel-cell business opportunities facilitates business between Japan and our other global fuel cell support centers.

North America
Oakville, Ontario, Canada
With a focus on thermal management, this full-service facility provides state-of-the-art heat exchangers and complete thermal management systems.

Paris, Tennessee, USA
This engineering/sales center develops composite bipolar plates and has the ability to incorporate polymer seals with the construction of bipolar plates.

The vehicles, homes, and offices of the future will be powered by new energy sources that deliver higher energy efficiency and lower emissions. With a long history of innovations, Dana is the ideal partner to help bring these next-generation technologies to life.

Dana will be ready
Whether it's a hydrogen internal combustion engine, fuel cells, or a hybrid, we'll be there to support the developers with innovative and reliable products.

As a world leader in the development and manufacture of fuel-cell stack, balance-of-plant, and fuel-processing components for automotive, industrial mobility, and rail stationary applications, Dana’s commitment to the advancement of fuel-cell technology led to the creation of four fuel-cell support centers worldwide. While each focuses on a separate facet of the fuel-cell system, together they share an overall commitment to the design, engineering, and manufacture of components for fuel-cell applications.

Europe
Neu-Ulm, Germany
Metallic bipolar plates with integrated seals are under development here, as are advanced coatings and alternative materials.

Asia
Yamato-ku, Kanagawa, Japan
Personnel at this central location for Dana’s Asian fuel-cell business opportunities facilitates business between Japan and our other global fuel cell support centers.

North America
Oakville, Ontario, Canada
With a focus on thermal management, this full-service facility provides state-of-the-art heat exchangers and complete thermal management systems.

Paris, Tennessee, USA
This engineering/sales center develops composite bipolar plates and has the ability to incorporate polymer seals with the construction of bipolar plates.
Dana's commitment to the advancement of fuel-cell technology led to the creation of four fuel cell support centers worldwide. While each focuses on a separate facet of the fuel-cell system, together they share an overall commitment to the design, engineering, and manufacture of components for fuel-cell applications.

Europe
Neu-Ulm, Germany
Metallic bipolar plates with integrated seals are under development here, as are advanced coatings and alternative materials.

Asia
Yamato-shi, Kanagawa, Japan
Personnel at this central location for Dana's Asian fuel-cell business opportunities facilitate business between Japan and our other global fuel cell support centers.

North America
Oakville, Ontario, Canada
With a focus on thermal management, this full-service facility provides state-of-the-art heat exchangers and complete thermal management systems.

Paris, Tennessee, USA
This engineering/sales center develops composite bipolar plates and has the ability to incorporate polymer seals with the construction of bipolar plates.